2 research outputs found

    Adoption of the Q Transcriptional System for Regulating Gene Expression in Stem Cells

    No full text
    The field of mammalian synthetic biology seeks to engineer enabling technologies to create novel approaches for programming cells to probe, perturb, and regulate gene expression with unprecedented precision. To accomplish this, new genetic parts continue to be identified that can be used to build novel genetic circuits to re-engineer cells to perform specific functions. Here, we establish a new transcription-based genetic circuit that combines genes from the quinic acid sensing metabolism of <i>Neorospora crassa</i> and the bacterial Lac repressor system to create a new orthogonal genetic tool to be used in mammalian cells. This work establishes a novel genetic tool, called LacQ, that functions to regulate gene expression in Chinese hamster ovarian (CHO) cells, human embryonic kidney 293 (HEK293) cells, and in mouse embryonic stem (ES) cells
    corecore